Journal of Organometallic Chemistry 177 (1979) 1-4 © Elseviei Sequoia S A, Lausanne – Printed in The Netherlands

1,1-BIS(PHENYLSELENO)- AND 1,1-BIS(METHYLSELENO)-ALKYLLITHIUMS AS BUILDING BLOCKS IN ORGANIC SYNTHESIS *

D VAN ENDE A CRAVADOR and A KRIEF

Department of Chemistry, Facultés Universitaires ND de la Paix, 61 rue de Bruxelles, B 5000 Namur (Belgium)

(Received March 5th, 1979)

Summary

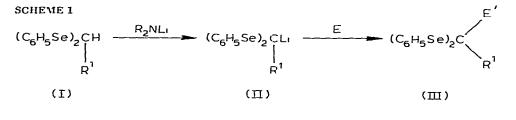
1,1-Bis(phenylseleno)alkyllithiums are conveniently prepared from the corresponding selenoacetals and lithium tetramethylpiperidide in HMPT/THF 1,1-Bis(methylseleno)alkyllithiums, not available by similar procedures are quantitatively obtained from 1,1,1-tris(methylseleno)alkanes and n-BuLi. These carbanions are treated with a large variety of electrophiles and the resulting products further transformed.

Introduction

Whereas the n-BuLi-promoted cleavage of the C—Se bond in methylselenoand phenylseleno-acetals and -ketals is a well established reaction [1] which occurs rapidly and quantitatively in THF (-78° C, <0.2 h; >95% yield). little was known [1a,2] about the metallation of selenoacetals. A recent report [3] in this field prompted us to publish the results below

Results and discussion

As expected the ease of metallation dramatically decreases from bis(phenylseleno)-methane (Ia) or -ethane (Ib) to bis(phenylseleno)heptane (Ic) or higher homologues, 1,1-bis(methylseleno)alkanes being the most difficult to deprotonate (Scheme 1). For example Ia is easily metallated with lithium diisobutylamide [1a] or diisopropylamide (LDA) in THF, while Ib requires the presence of HMPT (LDA, THF/HMPT; -30° C, 0 2 h, method A) for its successful deprotonation and higher homologues give disappointing results under similar conditions. However use of lithium tetramethylpipendide (LTMP) [4] (in


^{*} Dedicated to Professeur H Normant on the occasion of nis 72nd birthday on June 25th 1979.

R ¹	Ε	E'	Method used a	Yield of III (%) b
CH3	C ₁₀ H ₂₁ Br	C10H21	١	74
CH3	C ₁₀ H ₂₁ Br	C10H21	в	83
C6H13	C ₆ H ₁₃ Br	C6H13	1	44
C6H13	C ₆ H ₁₃ Br	C6H13	В	86
C ₆ H ₁₃	thy lene oxide	CH2CH2OH	В	88
C6H13	C6H5CH=O	HOCHC6H5	В	75

REACTIONS OF ELECTROPHILES WITH 1 I-BIS(PHEN, LSELENO)ALKYLLITHIUMS

^a The electrophile was added to the lithium reagent during 0.2 h at -30° C, then allowed to reach 0°C and stirred at this temperature for 1 h before the usual work up ^b The spectral data (IR NMR mass spectrometry) fully agree with the proposed structures

THF/HMPT, -30° C, 0 2 h, method B) in place of LDA leads to a high percentage of metallation (>80%) in the cases studied (Scheme 1, Table 1)

Analoguous bis(methylseleno)alkanes were not metallated under similar conditions. Use of stronger bases such as alkyllithiums in more polar solvents than THF or a higher temperature do not solve the problem, and exclusive C—Se bond cleavage was observed [1d] Interestingly the closely related bis(phenylseleno) analogues are partially metallated under these conditions. For example, treating n-BuLi in THF with bis(phenylseleno)alkanes Ia—Ic as already described (Scheme 1) but at higher temperatures (-50° C or +25°C instead of -78° C) leads to an increased percentage of metallation (-78° C no metallation; -50° C; IIa, 35%; IIb, 15%, IIc, 0%; +25°C; IIa, 55%, IIb, 25%, IIc, 0%) at the expense of carbon—selenium bond cleavage and similar behaviour is observed when more polar solvents are used (DME, -78° C, IIa, 50%; IIb, 35%; IIc, 22%; THF/HMPT: 9/1, -78° C; IIb, 26%).

1-Lithio-1,1-bis(methylseleno)alkanes (II') which cannot be made directly, can be quantitatively prepared from tris(methylseleno)alkanes (IV') and n-BuLi via selenium—metal exchange [1], which instantaneously occurs in ether or THF at -78° C (Scheme 2). Under the usual conditions the reactions are performed at -78° C in THF for 0.5 h prior addition of electrophiles Examples are given in Tables 2a and 2b and Scheme 2.

Particularly interesting is the exclusive C-Se bond cleavage observed with

TABLE 1

TABLE 2a

NLKY LATION OR HYDROXYALKY LATION OF 1 1-BIS(METHYLSELENO)ALKYLLITHIUMS(II') (SCHEME 2)

R ¹	E	E'	Yield of V' (%) ^a	
н	(CH ₃) ₃ SiCl	(CH ₃) ₃ Sı	72	
CH3	(CH ₃) ₃ SiCl	(CH3)3SI	83	
C6H13	C ₆ H ₁₃ Br	C ₆ H ₁₃	75	
C6H13	C ₄ H ₉ Br	C _A H ₉	80	
сн3	propylene oxide	сн ₂ снонсн ₃	83	

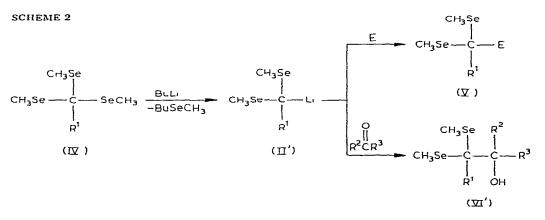

 a The spectral data (IR NMR and mass spectra) fully agree with the proposed structure

TABLE 2b

REACTION OF 1 1-BIS(METHYLSELENO)ALKYLLITHIUMS (II') WITH CARBONYL COMPOUNDS (SCHEME 2)

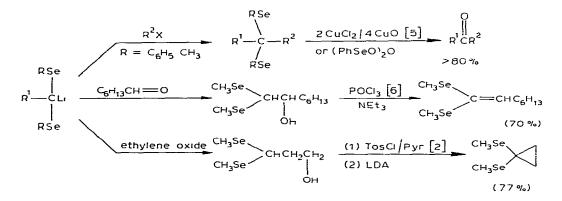
R ^I	R ²	R ³	Lield of $VI'(\mathcal{C}_{0})^{a}$	
CH3	н	C6H13	65	
СН3	н	C10H21	56	
CH ₃	CH ₃	C9H19	45	
C6H13	н	C6H13	70	
C6H13	н	C10H21	72	
C6H13	CH3	C9H19	-40	

^a The spectral data (IR NMR and mass spectra) fully agree with the proposed structures

the parent compound tris(methylseleno)methane (Table 2a, entry 1) (addition of the ortho-ester to the THF solution of n-BuLi is required), for which metallation is also possible [1a]. The latter reaction was easily and quantitatively performed by LDA in THF at -78° C, and the resulting carbanion was trapped by several electrophiles (Scheme 3 and Table 3).

SCHEME 3

 $(CH_{3}Se)_{3}CH \xrightarrow{LDA/THF} (CH_{3}Se)_{3}CL_{i} \xrightarrow{E} (CH_{3}Se)_{3}CE'$ $(\underline{IV}') (\underline{VII})$


E	Ľ'	Yuld of VIII ("r) a	
C ₆ H ₁₃ Br	C ₆ H ₁₃	80	
C ₁₀ H ₂₁ Br	C10H21	66	
CH ₃ I	CH ₃	80	
propylene oxide	CH2HOCHCH3	70	
C ₆ H ₁₃ CH=O	носнс6н13	75	

REACTION OF TRIS(METHY LSELENO) METHY I LIFILIUMS WITH FLFCTROPHILES (SCHEME 3)

^a Spectral data (IR NMR and mass spectra) fully agree with the proposed structures

The transformations presented in Scheme 4 clearly demonstrate the synthetic value of the reagents described.

SCHEME 4

References

- 1 (a) D Seebach and N Peleties Chem Ber 105 (1972) 511 and ref cited (b) W Dumont P Bayet and A. Knef, Angew Chem Int Ed 13 (1974) 804, (c) D. Seebach and A K Beck Angew Chem Int Ed, 13 (1974) 806 (d) D Van Ende W Dumont and A Knef Angew Chem Int Ed 14 (1975) 700
- 2 S Halazy J Lucchetti and A Knef, Tetrahedron Lett (1978) 3971
- 3 S Raucher and G A Koolpe, J Org Chem 43 (1978) 3794
- 4 R A Olofson and C M Dougherty J. Amer. Chem Soc 95 (1973) 581
- 5 A Burton, L Hevesi, W Dumont, A Cravador and A Krief, Synthesis in press
- 6 M Sevrin and A Krief unpublished work see also M Sevrin J.N. Denis and A Krief Angew Chem Int Ed, 17 (1978) 526

TABLE 3